Lesson Plan: Navigation - GPS Brett Wuth

Objectives:

At the conclusion of this lesson the participants will be able to:

- 1. explain how a GPS works
- 2. identify purposes for which a GPS is sufficient, a help, not useful
- 3. identify circumstances under which a GPS may fail
- 4. identify the significant configuration options of most GPS models
- 5. identify when to use UTM vs. Lat/Long
- 6. identify when to use NAD27 vs. NAD83/WGS84
- 7. configure a particular model for local SAR usage
- 8. read a UTM off a particular model and translate that to and from the UTM notation used with topographic maps.
- 9. determine the UTM of the location where they are at and the accuracy of their reading
- 10. given a destination UTM know what direction and distance to go to get to it
- 11.be able to record their current location as a Waypoint in a particular model
- 12.select a Waypoint on a particular model and have GPS determine distance and direction to it
- 13.create a distant Waypoint with a given UTM in a particular model
- 14.use GPS to convert between UTM and Lat/Long, and between NAD27 and NAD83/WGS84

Time Plan:

Total Time: 2 hours 30 minutes

Total Time. 2 hours 50 minutes		
Start	Material	
00:00	Introduce topic title	
5 min	Introduce Instructor	
	Determine experience level of students.	
	• Who uses GPS regularly?	
	• Who is comfortable reading UTM's off a map?	
	• Recruit more advanced students to assist in illustrating material.	
	Present Objectives	
	 explain how GPS works/fails 	
	 identify purposes for which GPS is sufficient/help/not useful 	
	• configure particular GPS; convert between UTM & Lat/Long, NAD27 &	
	NAD83-WGS84	
	• read UTM	
	know where you are	
	 determine direction and distance to remote UTM 	
	 record local/remote waypoints, select as destination 	

Start	Material
	How a GPS works
5 min	3 major components
	• 1. radio receiver
	compares time for radio signal to arrive from satellites
	receives information on satellite locations
	• 2. computer
	• computes where GPS currently is (needs 4 separated satellites)
	• 10-15m accuracy
	records where GPS has been
	allows entry of remote locations allowlates distance and direction between points
	 calculates distance and direction between points calculate speed/time
	 calculate speed/time draw a route on a map
	 place points on map
	 3. magnetic sensor (only some models)
	 determines direction GPS is facing
	 GPS without magnetic sensor tells what direction GPS has moved, but
	not direction GPS is facing
	 test GPS by turning it. Does the direction arrow change?
00:10	How a GPS fails
6 min	 radio signal not received from 4 satellites
0 mm	 heavy tree cover
	 blocked view of sky (hills, mountains, building)
	 satellites not in right positions (below/at horizon, clustered)
	• satellites not working/disabled (military selective availability)
	• radio interference
	• multipath (reflected) signals ^[3]
	weather does not affect signal
	• computer fails
	• batteries (-15C)
	• temperature (too hot)
	• water/condensation (if not sealed)
	electromagnetic interference
	 magnetic sensor fails (same as compass)
	• metal (belt buckles, cars)
	 magnetic fields (power lines)
	magnetic anomalies (far north)
00:16	Alternatives/Aids to GPS
3 min	 location: dead recogning / distance-bearing / triangulation
	recording: paper
	 distance/direction: subtraction & estimation; plot on map
	• map (better choice)
	bearing: compass (better choice)

Start	Material
00:19 7 min	 When is a GPS sufficient/help/not helpful discuss examples, compare with other alternatives determine location when at hill top valley bottom heavy trees canyon downtown city under power lines heavy fog blizzard determine direction/distance to known UTM some place you can see some place you've been a LatLong a street address route selection remembering a UTM
00:26 5 min	 Significant configuration settings Most GPS's allow you to configure: True North vs. Magnetic North use True North GPS's don't generally allow you to set declination to exact same value used on compasses. UTM vs. Lat / Long UTM generally used by SAR Map Datum: NAD27 vs NAD83/WGS84 measurement of the shape of the Earth NAD "North American Datum" WGS "World Geodetic Survey" should use same as the topo map being used Pincher SAR maps generally NAD27
00:31 9 min	configure a particular model for local SAR usage Handout PCSAR GPS Configuration sheet Exercise: Students configure their GPS Help students to configure if their particular model not same as PCSAR GPS

Start	Material
00:40	Reading a UTM
23 min	Assume students have basic background in UTM
	Distribute: topo maps
	ZEN (Zone Easting Northing)
	long form of numbers
	 read off corner of topo maps
	 northing: number of meters north of the equator
	• easting: number of meters east of imaginary zone line (500km center line)
	converting to short form
	Read the current/last known UTM
	 last location where GPS was turned on and could see satellites
	 instructions on front of Pincher SAR GPS's
	determining accuracy
	Garmin eTrex: on Satellite Page
	• Exercise:
	 Record last known UTM in long form
	Give last known UTM in short form
	• Go outside, record current UTM in long and short form, note accuracy.
	 assist students that don't have Pincher SAR GPS
01:03	Manual determination of Distance and Direction
10 min	1
	without map
	 subtract Easting/Northing
	 estimate distance or Pythagorean theorem
	 estimate direction or calculate Tangent
	• or draw scale map
	• Example:
	• I'm at Zone:12U Easting: 0286623 Northing: 5484642
	 I'm going to:12U Easting: 0287134 Northing: 5484419
	 location is: 511 meters East and 223 meters South
	• estimate: ESE 620m
	 map/calculation: 129 degrees 661m

Material
Recording current location:
• <i>Example</i> : Garmin eTrex
• Menu/Mark
• (enter to use current location)
• <i>Exercise</i> : students record most recent location as a waypoint
Assist students using other models
Reviewing a Waypoint
• Need to remember the name of the waypoint
• write down the name or give it a good name when creating waypoint
• Example: Garmin eTrex
Menu/Waypoints
choose starting letter/number shoose warmaint
 choose waypoint read UTM
• <i>Exercise</i> : students review waypoint they just recorded
Assist students using other models
Manually entering a Waypoint
• You can enter a UTM that you've never been to
• Example: Garmin eTrex
• Menu/Mark
• down to UTM / enter
 up/down to select digits to change / enter up/down for new value of digit / enter
 repeat for other digits
 down to OK/enter
• up to OK/enter
• <i>Exercise</i> : students enter an arbitrary waypoint
 use something close to current position
• Assist students using other models
Direction and Distance to a Waypoint
 selecting a Waypoint as a "Go To"
• <i>Example</i> : Garmin eTrex
Menu/Waypoints
 select range waypoint is in (up/down then enter)
 select point (up/down then enter)
• up to go to then enter
 press down until "Bearing" appears
• <i>Exercise</i> : students determine distance and direction to waypoint they just
entered.
• Assist students using other models

Start	Material
01:30	Outside Exercise
50 min	Distribute radios, street map, exercise sheet.
	In an outside area of a few blocks
	In small groups of 2 or 3, the students will:
	 Be assigned a call sign: "Team A", receive radio, map
	• Be assigned a direction, subsequent teams being about 90 degrees apart
	Create a waypoint for their start location, also record on paper.
	• Walk to a place of their choosing, 1 or 2 blocks in the direction.
	• Create a waypoint for this location, also record the location on paper.
	• Transmit the full UTM to the next team. Team A gives their UTM to Team
	B. Team B gives location to Team C, and so on. The last team gives their
	location to Team A.
	Record the location transmitted to you.
	• Estimate the distance and direction to that UTM.
	Create a waypoint for that location you received.
	• Set the GPS "Go To" to the new waypoint.
	• Walk to the GPS location.
	• Make note of the location.
	• Set the GPS "Go To" to the starting location.
	Follow the GPS back to the start.
02:20	Converting Waypoints between notations
2 min	UTM to/from LatLong
	NAD27 to/from NAD83/WGS84
	• Procedure
	configure for source notation
	• create waypoint (in field, or entered) in source notation
	configure for desired notation
	view waypoint
02:22	Review Objectives
8 min	• Questions

Aids:

- 5 Pincher SAR Garmin eTrex GPS's
- 1 Brett Wuth's Garmin eTrex GPS
- 5 copies topo map of locale (82 H/5)
- copy for each student of local street map
- copy for each student of PCSAR Doc-69 "GPS Set-Up and Maintenance"
- copy for each student of outside exercise sheet, adapted to locale
- Radios

Frequently Asked Questions

• Aren't 3 satellites enough? No. 3 satellites would be enough if you knew precisely how long after the satellite sent its signal that it arrived. But the clock in the GPS is not accurate enough for that. Instead we can tell with 2 satellites the difference in time for the 2 satellite signals, and therefore the difference in our distance from them.

Knowing the difference gives our location on a paraboloid (3 dimensional parabola). Adding a 3rd satellite gives our location on an parabola or ellipse. A 4th satellite gives our location as one or two points. One of the points can be eliminated because it's no where near the surface of the earth or its moving at an impossible speed.^[4] However, if we have only three satellites, and the arc happens to be close to vertical for likely elevations, then our horizontal location is the same regardless of where we are on the arc.

• Can a GPS tell you the distance and direction between two points when you are not at either? Most can't. It's not a commonly asked for feature, although it would be very useful at a SAR Command Post.

Feedback:

2004-06-01 Wuth presentation at PCSAR regular meeting

- Outdoor exercise needs more written instructions
- At 45 minutes, outdoor exercise felt a little rushed. 50 or 60 minutes might be better.
- Students naturally wanted to go in groups in outdoor exercise. Good learning resulted from working together.
- Easiest to let students just choose their points randomly from the outdoor exercise list.

License:

 Original content copyright © 2004, Brett Wuth. This work is licensed under the Creative Commons ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Reference Material:

- [1] "Does RAIN, SNOW, or CLOUDS affect reception of GPS signals?" http://gpsinformation.net/gpsclouds.htm Joe Mehaffey
- [2] GPS SPS Signal Specification, 2nd Edition (June 2, 1995) http://www.navcen.uscg.gov/pubs/gps/sigspec/default.htm
- [3] "Multipath Signals: How do they make my GPS have errors?" <u>http://gpsinformation.net/multipath.htm</u> Joe Mehaffey
- [4] http://www.trimble.com/gps/ Good tutorial on GPS theory. Justification for 4 satellites is a bit wonky, perhaps based on how calculation is done using spheres instead of parabaloids.

Notes:

- Weather (rain, snow, clouds) does not affect GPS^[1]
- The GPS frequency was chosen to be unaffected by weather.^[1]

To Do:

Add section on WAAS